
Efficient Hardware for VVC Residual Syntax
Elements Generation

Gabriel Bitencourt Cardoso∗, Jiovana Sousa Gomes†, Sergio Bampi†, Fábio Luı́s Livi Ramos∗
{gabrielbc.aluno, fabioramos}@unipampa.edu.br, {jsgomes, bampi}@inf.ufrgs.br

∗Federal University of Pampa, Brazil
† Informatics Institute, Federal University of Rio Grande do Sul, Brazil

Abstract—Video processing is something ubiquitous these days
(every year more and more video data is available e.g., streaming
services like YouTube, Netflix, etc.). The task of tackling its
storage and playback is handled by video codecs. One recent
alternative is the Versatile Video Coding (VVC) standard, being
the state-of-the-art in terms of video coding capabilities. As a
drawback of its coding efficiency, the processing time has also
severely increased. Thus, a viable solution is to use dedicated
hardware accelerators for bottleneck tasks of the flow. One of
these steps is the residual syntax elements processing, historically
being the major contributor to the entropy encoding input.
Hence, this work introduces a novel efficient hardware design
for a partial VVC residual syntax elements generation.

Index Terms—Video Compression, Hardware Design, VVC,
Residual Coding.

I. INTRODUCTION

In today’s world, digital video applications have become
integral to people’s daily lives, finding utility in various
contexts such as security, entertainment, work, and education.
The significance of video is evident from projections by
Ericsson [1], which indicate that video content will constitute
a staggering 80% of global mobile network traffic by 2028.

Given the exponential growth in video consumption, there
is a pressing need for effective video encoding solutions to
facilitate the transmission and storage of this vast amount of
data across our everyday devices. One noteworthy solution that
has emerged recently is the AV1 format [2], developed by the
AOMedia consortium. This format aims to be both royalty-
free and competitive against traditional standards, offering
an alternative with high performance. Conversely, Versatile
Video Coding (VVC), also referred to as H.266, represents
cutting-edge technology in compression efficiency as the latest
standard from the Joint Video Experts Team [3]. As the state-
of-the-art in video compression, VVC sets new benchmarks
in reducing file sizes while maintaining high visual quality.

By leveraging advanced techniques, VVC addresses the
challenges posed by the ever-increasing demand for high-
resolution video content. Nevertheless, the advancements in
compression efficiency that it achieves come at the expense
of increased computational complexity when compared to
previous solutions. This heightened complexity poses a hurdle
in terms of processing power and efficiency, particularly for
general-purpose computers that may struggle to handle the
demanding computations involved.

To surmount this challenge, one viable solution is the
utilization of dedicated hardware accelerators. By offloading
the intensive computational tasks required by VVC onto
specialized hardware accelerators, the overall processing time
can be greatly reduced, enabling real-time video encoding and
decoding even for high-resolution content.

Therefore, being the residual coding a bulky step to provide
data for the Entropy Encoding stage (the last step of the
encoding flow) for previous and current codecs [4], [5], a hard-
ware design seems an adequate choice. The goal is to provide
CABAC (Context-Adaptive Binary Arithmetic Encoder) [6] -
the arithmetic encoding algorithm of VVC entropy stage - with
enough input (called bins) to avoid it starving.

Hence, this work introduces a novel efficient hardware
design for the partial VVC Residual Syntax Elements (RSE)
generation. To the best of the authors’ knowledge, this is the
first-ever proposed architecture for the mentioned goal found
in the literature.

II. RESIDUAL CODING IN VVC

In previous standards, such as HEVC [4], and also for
VVC [5] residual coding has a tendency to comprise the
majority of input data for the entropy encoding. Thus, one
might assume that it is a worthy part to be improved via
hardware accelerators.

The residual coding derives from the residues after the pre-
diction step, and the transform coefficients after the prediction.
For short, they will be referred to here simply as coefficients
or coefs. Generally, they are organized in a square-shaped
organization, as one may see in Fig. 1. The extraction of
the information from the residual coefficients will generate

Fig. 1. Example of 4x4 Residual Coding Coefficients.



Fig. 2. Example of Residual Syntax Elements Generation

the related syntax elements, following the red arrows order as
depicted in Fig. 1, starting at the bottom-right value up to the
top-left coefficient. Hence, the referred example will by the
guide to better explain each one of them next.

The first step is to, inside the transform matrix, discover
where is the first significant (i.e., non-zero) coefficient in
reverse scan order position. The position where it is found out
is signaled by the last sig coef x and last sig coef y. Thus, it is
assumed that all previous read coefficients are non-significant
(i.e., have the value zero).

For the blocks (or the remaining of the blocks) where there
are significant coefficients, six basic RSE may occur, namely:
(i) sig - indicates if the coefficient is significant i.e. if the
coefficient has a value other than zero; (ii) sign - indicates the
signal of the number, in case it has a value other than zero;
(iii) par (from parity) - says the parity of the coefficient; (iv)
gt1 (i.e., greater than one) - shows if the absolute value is
greater than one, in case it is significant; (v) gt3 (i.e., greater
than three) - indicates if the absolute value of the coefficient
is greater than three; and (vi) rem (from remaining) - which
make a manipulation with the coefficients greater than or equal
to four - basically it subtracts the absolute value by four and
divides the rest by two. Fig. 2 shows how they are produced
based on the example of Fig. 1, as long as where, in the 4x4
block, the last position RSE occurs (i.e., the last sig coef RSE).

III. HARDWARE DESIGN FOR RESIDUAL CODING IN VVC

The hardware design for the RSE is depicted in Fig. 3.
Basically, combinational logic is used to correctly generate
all the elements presented in the previous section. Since
all elements are generated at once for a given coefficient,
appearing as Coef in Fig. 3, there is no need to revisit it after
the first usage, saving memory access when one considers a
complete encoder design.

To shed some light on the design, here are the explanations
of each RSE generation:

SIG - a simple comparison is performed to verify if the
coefficient is zero is or not.

GT1 - another comparison is made, but now to verify if
the coefficient is greater than one in absolute value

PAR - the least significant bit o the coefficient corresponds
to the parity of the value.

GT3 - a comparison is made to verify if the coefficient is
greater than three, considering again its module.

Fig. 3. Architecture for the VVC Residual Syntax Elements Generation.

REM - a subtraction by four is performed on the absolute
value of the coefficient, proceeded by a shift-right by
one position (i.e., an integer division by two).

SIGN - the most significant bit of the coefficient corre-
sponds to its signal (considering a two’s complement
representation).

One may notice again that all RSE are generated at once,
even if they are not valid for a given coefficient (for instance, if
the absolute value of the Coef is one, it does not generate PAR,
nor GT3, etc.). Therefore, the validity of each RSE depends
on the generation of another RSE, as can be seen in Table
I. In our design, we are assuming that the valid RSE are the
ones to be registered for further usage in VVC’s CABAC [3].
Thus, the enable signal of the specific register is the valid flag
for each one of them.

IV. SYNTHESIS RESULTS

The design was described in VHDL and synthesized for
ST 65 nm using the Cadence Genus tool. The frequency,



TABLE I
REQUIRED CONDITIONS TO GENERATE RESIDUAL SES

Syntax Elements SIG GT1 PAR GT3 SIGN REM

Value 0, if coef. = 0
1, otherwise

1, if coef. >1
0 otherwise

0 when even,
1 when odd

1, if coef. >3,
0 otherwise

0 when negative,
1 when positive (coef. - 4) /2

Valid Condition - SIG = 1 GT1 = 1 GT = 1 SIG = 1 GT3 = 1

TABLE II
SYNTHESIS RESULTS

Max freq: 800 MHZ
NAND2 Area: 682
Leak power: 1.6 uW

Internal power: 408 uW
Net power: 1896 uW

area, and power results are shown in Table II. These results
where generated considering only logic synthesis standard
setup (e.g., switching activity) at this moment. We considered
it to be sufficient that only one transformed coefficient is
processed per cycle since a hardware design for VVC CABAC
has not yet been found in the literature. Thus, one may not
infer how much of these RSE the entropy encoder is able
to handle at once without starving. Moreover, since the VVC
CABAC (differently from HEVC and AVC) has the obligation
to perform its operation using a multiplier with non-constant
inputs [3], it is predicted that this will have a throughput
penalty when compared to previous standards (at the advantage
of having more coding efficiency).

To the best of the authors’ knowledge, there is no similar
work in the literature for VVC (there is only for HEVC, such
as [4]. Hence, no direct comparison could be made against
other similar hardware designs.

V. CONCLUSION

This work has introduced an efficient hardware design for a
partial VVC Residual Syntax Elements generation, being the
first ever found in the literature for that purpose. The goal was
to generate six of the basic RSE at once for every transformed
coefficient. Synthesis results showed the overall performance
of the architecture. As future work, a complete design for
all RSE is intended, and the processing of more than one
transformed coefficient is also on the radar.

ACKNOWLEDGMENT

This study was financed in part by the Coordenação
de Aperfeiçoamento e Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001, and also by CNPq and
FAPERGS Brazilian research support agencies.

REFERENCES

[1] Ericsson, “Ericsson Mobility Report,” Tech. Rep., 2022. [Online]. Avail-
able: https://www.ericsson.com/en/reports-and-papers/mobility-report

[2] P. de Rivaz and J. Haughton, “AV1 bitstream & decoding process
specification,” The Alliance for Open Media, p. 182, 2019. [Online].
Available: https://aomediacodec.github.io/av1-spec/av1-spec.pdf

[3] B. Bross, J. Chen, and S. Liu, “Versatile video coding (VVC) draft 6,”
Document JVET-M1001, 2019.

[4] F. L. L. Ramos, A. V. P. Saggiorato, B. Zatt, M. Porto, and S. Bampi,
“Residual Syntax Elements Analysis and Design Targeting High-
Throughput HEVC CABAC,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 67, no. 2, pp. 475–488, 2020.

[5] H. Schwarz, M. Coban, M. Karczewicz, T.-D. Chuang, F. Bossen,
A. Alshin, J. Lainema, C. R. Helmrich, and T. Wiegand, “Quantization
and Entropy Coding in the Versatile Video Coding (VVC) Standard,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 31,
no. 10, pp. 3891–3906, 2021.

[6] D. Marpe, Schwarz. H, and T. Wiegand, “Context-based adaptive binary
arithmetic coding in the H. 264/AVC video compression standard,” IEEE
Transactions on Circuits and Systems for Video Technology (TCSVT),
vol. 13, no. 7, pp. 620–636, 7 2003.


